Monday, 11 June 2012

How to use Geometric Mean Calculator

In the previous post we have discussed about Operations With Integers and In today's session we are going to discuss about How to use Geometric Mean Calculator. In mathematics whenever we study about series then geometric progression is one of the most complicated series. If a, b, c are in geometric progression then b/a = c/a =r here  r is called a common difference and its value will be same for all the elements of geometric progression.
If the value of a =2 , b=4 ,c=8 ,then according to geometric progression b/a = 4/2 , c/a = 8/4
now we get common difference r = 2 . If we have to extend the terms in geometric progression then we have to multiply last term by common difference. As in the above example 8 is last term and if we multiply it by common difference two then we will get 16 that will be the next term of the series.
If we have two numbers a and b and we are asked to calculate the geometric mean then it will be
G= √ab here G is called geometric mean for all the elements. Now we  will see the How we calculate the geometric mean. Suppose we have a two numbers first number a= 2 and another number is b= 8 and these numbers are in G.P then geometric mean will be G=√2*8 = √16 = 4 , in this way we get the geometric mean G= 4. If we talk about geometric mean calculator then it always ask for two values, the values should be in geometric progression, firstly it will multiply two value then it will calculate square root. In this way we can calculate the geometric mean of any two numbers with the help of geometric mean calculator.
Boolean algebra is one of the most important topics in CBSE syllabus so If we want score good marks you should go through Boolean algebra and would read the cbse class 12 sample papers.


No comments:

Post a Comment